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A general proof that more energy flows upscale than downscale in two-dimensional
turbulence and barotropic quasi-geostrophic (QG) turbulence is given. A proof is also
given that in surface QG turbulence, the reverse is true. Though some of these results
are known in restricted cases, the proofs given here are pedagogically simpler, require
fewer assumptions and apply to both forced and unforced cases.

1. Introduction
It is a well-known result that energy is transferred by nonlinear wave–wave

interaction predominantly upscale in two-dimensional homogeneous and isotropic
turbulence, and in quasi-geostrophic (QG) turbulence (see Salmon 1998). What is less
commonly known is the fact that, except for certain special cases, a general unified
proof spanning both the forced-dissipative and the decaying cases is not yet available.
Furthermore, it is also not widely appreciated that these results cannot be readily
extended to models of quasi-geostrophic turbulence.

It was recognized by Fjørtøft (1953) and Charney (1971) that the direction of net
energy transfer in two-dimensional and QG turbulence may be different from that for
three-dimensional isotropic and homogeneous turbulence and that the cause of this
different behaviour should be attributed to the former’s twin conservation of energy
and enstrophy. However, as pointed out previously by Merilees & Warn (1975) and
Tung & Welch (2001), the analysis of triadic transfers by Fjørtøft (1953) and Charney
(1971) was flawed. These proofs made use of the simultaneous conservation of energy
and enstrophy in two-dimensional and QG turbulence, and the fact that enstrophy
spectrum G(k) is related to the energy spectrum E(k) by G(k) = k2E(k). They claimed
to have shown that if a unit of energy is moved downscale, many more units of it have
to be moved upscale in order to preserve the twin energy and enstrophy conservation.
However, the direction of energy flow in time cannot and should not be determined by
conservational considerations alone. Either an essential use of the dissipation terms
has to be made to set the direction of the time arrow, or a constraining assumption
has to be introduced on the initial condition to employ a Boltzmann-type argument.

In his paper, Fjørtøft (1953) gives two distinct proofs. The first proof by Fjørtøft
(1953) does show that the only admissible triad interactions are those that spread
energy from the middle wavenumber to the outer wavenumbers (and vice versa, the
ones that bring in energy to the central wavenumber from the outer wavenumbers).
These are the triad interactions defined by Waleffe (1992) as class ‘R’. An alternative
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set of triad interactions are those where energy is transferred from the smallest
wavenumber to the two largest ones; these are the class ‘F’ triad interactions, and
they are dominant in three-dimensional turbulence. Fjørtøft’s proof can be employed
to rule these out in two-dimensional turbulence. However, as was pointed out by
Merilees & Warn (1975) there also exist class ‘R’ triad interactions that transfer more
energy downscale than upscale. Thus, eliminating the class ‘F’ interactions is not
sufficient to constrain the direction of the energy flux or the enstrophy flux. Despite
this problem, Fjørtøft’s proof has been popularized in textbooks (Salmon 1998) and
review articles (Tabeling 2002) as a rigorous proof that constrains the direction of
the fluxes in two-dimensional turbulence, thereby becoming a bit of a misunderstood
‘folklore’ argument.

The second result of Fjørtøft (1953) is an upper bound on the total energy
accumulated on wavenumbers larger than some given k. This result, however, applies
only to initial-value problems without forcing, where energy has to be bounded,
unsurprisingly. This inequality was later taken by Charney (1971) as a proof that
energy cannot go downscale, since the energy E>k(t) accumulated at wavenumbers
larger than k is bounded by

E>k(t) �
1

k2
G(t) �

1

k2
G(0), (1.1)

where G(t) is the total enstrophy at time t . Thus, the energy spectrum E(k, t) is
bounded by E(k, t) � ck−3 for some constant c. Tung & Welch (2001) pointed out
that this behaviour of the energy spectrum is merely a consequence of the requirement
for convergence of the Fourier representation of the enstrophy spectrum G(k), which
implies that G(k) must decay faster than k−1 as k → ∞. Therefore the energy spectrum
E(k) must decay faster than k−3 as k → ∞. It says nothing about the direction of
energy cascade, thus it does not help Fjørtøft’s ‘proof’ in the first half of the paper.
On the other hand, equation (3.18) of our paper, which involves fluxes, is derived via
the same mathematical trick that Fjørtøft (1953) first used to derive his inequality,
which involves spectra.

The deeper conceptual difficulty with Fjørtøft’s result was also recognized by
Kraichnan (1967) in § 3 of his paper. As is well known, the Euler equation is invariant
with respect to time reversal, and as Kraichnan himself has observed, the direction
of the energy and enstrophy flux can be reversed simply ‘by reversing the velocity
field everywhere in space’. In other words, for every initial condition where the
fluxes go one way, there is another initial condition where they go the opposite way.
This conundrum is similar to the situation in statistical mechanics, where experience
suggests that entropy-increasing solutions are statistically more probable than
the entropy-decreasing solutions, even though the underlying dynamical system is
symmetric under time reversal. The arguments used to resolve this apparent paradox
involve selecting a class of initial conditions which give entropy-increasing solutions,
and arguing in some way that the initial conditions have to be members of that class
in order to be physically realistic. Kraichnan (1967) tries to define the direction of
the time arrow by assuming that the cascade energy spectrum has an ‘urge’ to go
towards the energy spectrum corresponding to absolute thermodynamic equilibrium,
which implicitly assumes the validity of a Boltzmann-type thermodynamic argument.
Except for an interesting proof by Rhines (1975, 1979), which will be discussed next,
we are not aware of any convincing argument that decides that the direction of the
fluxes for the case of the Euler equation points toward thermodynamic equilibrium.
On the other hand, because the Navier–Stokes equations are dissipative and more
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realistic than the Euler equation, a proof for the Navier–Stokes equation is more
relevant. As we shall see, in the forced-dissipative case, the direction of the time arrow
is decided by the dissipation terms of the Navier–Stokes equations without requiring
any further assumptions.

The Rhines proof is applicable to the case of unforced decaying turbulence (Rhines
1975, 1979; Salmon 1998). In his argument, Rhines begins with the assumption that
an initial peak of energy in the energy spectrum has the tendency to spread out. This
assumption constrains the set of initial conditions and thus defines the direction of the
time arrow. Then, he shows that the energy-weighted wavenumber, which represents
the average location of the peak, will decrease in time therefore, moving the peak to
larger length scales. From this, he argues that the energy therefore has a tendency
to go upscale. Although Rhines originally intended the proof to apply to both the
viscous case and the inviscid case, there was an error in Rhines (1979), where the
dissipation of energy was ignored while that of the enstrophy was kept. Consequently
the proof, in its published form, is valid only for the inviscid case. This problem
was remedied by Scott (2001), who gave a corrected proof for the case of molecular
diffusion and Ekman damping. In the present paper we will extend the proof to the
case of hyperdiffusion. However, we will also show that, curiously enough, the proof
does not work for the case of hypodiffusion.

It should be emphasized that Rhines’ proof derives a statement involving the time
derivative of the global integral of a quantity involving the energy spectrum. As
such, it establishes a global tendency for the energy spectrum as a whole to shift
toward smaller wavenumbers. However, it would be incorrect to draw conclusions
on the behaviour of the energy flux at local intervals of wavenumbers from a global
result. For example, one cannot conclude from this proof that the energy flux on the
downscale side of the forcing range goes upscale. Furthermore, because the scope of
the proof is confined to the decaying problem, one can draw no conclusions on the
direction of the energy flux from this proof for the forced-dissipative case.

A nice proof was given by Eyink (1996) for the forced-dissipative case in § 3.1.1
of his paper (see (3.2) to (3.8)). Similar proofs have also been given by Tran &
Shepherd (2004), Danilov (2005) and Gkioulekas & Tung (2005b). The advantage of
this proof is that it allows the dissipation terms to decide the direction of the time
arrow. Furthermore, it directly considers the behaviour of the energy flux instead of
inferring it from the time derivatives of the energy spectrum. On the other hand,
it cannot be easily extended to the case of decaying turbulence. Furthermore, this
proof also requires an assumption: it requires that inertial ranges exist and that there
is a separation of scales between the upscale and downscale dissipation scale and
the forcing scale. These assumptions are well supported by numerical simulations
(Boffetta, Celani & Vergassola 2000; Ishihira & Kaneda 2001; Lindborg & Alvelius
2000; Pasquero & Falkovich 2002). However, unlike the case of three-dimensional
turbulence where the energy cascade is very robust, in two-dimensional turbulence
there are situations where the inertial ranges do not exist (Danilov 2005; Danilov &
Gurarie 2001a,b; Tran & Bowman 2003, 2004).

In the remainder of his paper, Eyink (1996) shows that the underlying assumptions
on the existence of inertial ranges can be rigorously reduced to the hypothesis that
the total energy of the system remains finite in the limit ν → 0+ (see Eyink 1996,
Hypothesis 1). As was pointed out to us by an anonymous referee, from a physical
point of view, this hypothesis serves to rule out the possibility that the energy injected
at the forcing range will simply pile up in the spectral neighbourhood of the injection
and diverge to infinity in the limit ν → 0+. Thus, it is similar, in meaning, to the
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hypothesis of Rhines (1975, 1979) that instead of piling up at forcing, the injected
energy will want to spread out. From this hypothesis, Eyink (1996) shows that there
exist regions of constant flux both upscale and downscale of the forcing scale, and
derives bounds on the location of the dissipation scales that prove a separation of
scales between the dissipation scales and the forcing scale. It should be noted that
the presence of a constant flux does not guarantee that a local cascade of energy
and enstrophy is the dominant effect. A constant flux may also result from non-
local transfer that takes energy and enstrophy directly from the forcing scale to the
dissipation scales.

In the present paper we will use the energy flux approach and derive an inequality
for the general case that shows that the weighted average of the energy flux is negative
and the weighted average of the enstrophy flux is positive. The averages involved are
such that the inequalities can be satisfied only when most of the energy goes upscale
and most of the enstrophy goes downscale. For example, the energy flux inequality
gives more weight to large wavenumbers than small wavenumbers. Consequently,
the upscale energy flux at small wavenumbers must be significantly larger than the
downscale flux at large wavenumbers to make the average come out negative. A
similar consideration applies to the enstrophy flux inequality.

What is remarkable is that in the forced-dissipative case these inequalities can be
derived without any assumptions, except for requiring that the forcing spectrum is
confined to a finite interval of wavenumbers, which can even be relaxed if necessary.
No assumptions on the existence of inertial ranges are necessary, which means that the
inequalities are also valid in situations where the inertial ranges fail to exist. For the
case of decaying turbulence, it is necessary to make an assumption concerning the time
derivative of the energy spectrum, but given that assumption the same inequalities
continue to hold. We believe that the reason why it is necessary to make an assumption
for the decaying case is to weed out unusual initial conditions that might temporarily
reverse the direction of fluxes. In any event, the assumption involved is somewhat
weaker than the assumption used by Rhines.

The paper is organized as follows. In § 2 we review the mathematical properties
of the generalized one layer model. The flux inequalities are proved for the forced-
dissipative case in § 3. The implications for two-dimensional turbulence are discussed
in § 4, and for models of quasi-geostrophic turbulence in § 5. A proof of the flux
inequalities for the decaying case is given in § 6, and a review of the proof by Rhines
in § 7. The paper is concluded in § 8. The Hölder inequalities, used in our discussion
of the Rhines proof, are reviewed in the Appendix.

2. Preliminaries
We shall first present the general case of the one-layer advection–diffusion model

which encompasses two-dimensional turbulence, Charney–Hasegawa-Mima (CHM)
turbulence, and surface quasi-geostrophic (SQG) turbulence, before considering the
subcases separately. The governing equation of these systems has the distinguishing
form of a conservation law for a vorticity-like quantity ζ :

∂ζ

∂t
+ J (ψ, ζ ) = −[ν(−∆)p + ν1(−∆)−h]ζ + F, (2.1)

where ψ(x, y, t) is the streamfunction and ζ is related to it through a linear operator
L by ζ = − Lψ . We assume that L is a diagonal operator in Fourier space whose
Fourier transform L(k) satisfies L(k) > 0 and L′(k) > 0. The Jacobian term J (ψ, ζ )
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describes the advection of ζ by ψ , and is defined by

J (a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
. (2.2)

We have written the dissipation of ζ in a more general form than normally used.
Our proof does not depend on the details of the operator D = ν(−∆)p + ν1(−∆)−h,
only that it is a positive operator. F is the forcing function; ν is the hyperdiffusion
coefficient; ν1 is the hypodiffusion coefficient. The physical case of molecular diffusion
and Ekman damping corresponds to p = 1 and h =0.

It can be shown that if a and b satisfy a homogeneous (Dirichlet or Neumann)
boundary condition, then 〈〈J (a, b)〉〉 = 0, where we use the notation 〈〈f 〉〉 ≡∫∫

(f (x, y)) dx dy. It follows from the product rule that

〈〈J (ab, c)〉〉 = 〈〈aJ (b, c)〉〉 + 〈〈bJ (a, c)〉〉 = 0, (2.3)

from which we obtain the identity

〈〈aJ (b, c)〉〉 = 〈〈bJ (c, a)〉〉 = 〈〈cJ (a, b)〉〉, (2.4)

which was also shown previously by Tran & Shepherd (2004). We assume that the
operator L is self-adjoint in the sense that it satisfies 〈〈f (Lg)〉〉 = 〈〈g(Lf )〉〉 for any
fields f (x, y) and g(x, y). This is true if we assume that L is diagonal in Fourier
space.

The conservation law ∂ζ/∂t + J (ψ, ζ ) = 0 conserves the ‘enstrophy’-like quadratic
B = (1/2)〈〈ζ 2〉〉 for any arbitrary linear operator L, because

〈〈Ḃ〉〉 = 〈〈ζ ζ̇ 〉〉 = 〈〈−ζJ (ψ, ζ )〉〉 = 〈〈−ψJ (ζ, ζ )〉〉 = 0. (2.5)

For self-adjoint operators L, the ‘energy’-like quadratic A= (1/2)‖ − ψζ‖ is also
conserved. To show that, note that

〈〈Ȧ〉〉 = (1/2)〈〈−ψζ̇ − ζ ψ̇〉〉 = (1/2)[〈〈ψJ (ψ, ζ )〉〉 + 〈〈ζL−1J (ψ, ζ )〉〉] (2.6)

= (1/2)[〈〈ψJ (ψ, ζ )〉〉 + 〈〈L−1ζ )J (ψ, ζ )〉〉] (2.7)

= 〈〈ψJ (ψ, ζ )〉〉 = 〈〈ζJ (ψ, ψ)〉〉 = 0. (2.8)

Let A(k) and B(k) be the spectral density of A and B , respectively, such that
A=

∫ +∞
0

A(k) dk and B =
∫ +∞

0
B(k) dk, and k is the isotropic two-dimensional

wavenumber. The spectral equations are obtained by differentiating A(k) and B(k)
with respect to t , and employing the Fourier transform of the governing equation
(2.1):

∂A(k)

∂t
+

∂ΠA(k)

∂k
= −DA(k) + FA(k), (2.9)

∂B(k)

∂t
+

∂ΠB(k)

∂k
= −DB(k) + FB(k). (2.10)

It is understood that ensemble averages have been taken in the above quantities. Here
ΠA(k) is the spectral density of A transferred from (0, k) to (k, +∞) per unit time by
the nonlinear term in (2.1), DA(k) the dissipation of A, and FA(k) the forcing spectrum
of A, and likewise for the B equation. The conservation laws imply for the viscous case
that ΠA(0) = limk→∞ ΠA(k) = 0 and ΠB(0) = limk→∞ ΠB(k) = 0. For the inviscid case,
this condition can be violated, in principle, by anomalous dissipation for solutions
that have singularities. The spectra of A and B are related as B(k) = L(k)A(k), and
likewise it is easy to show, from the diagonal structure of the L operator in Fourier
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space, that DB(k) = L(k)DA(k) and FB(k) = L(k)FA(k). Combining these equations with
(2.10) and (2.9) we obtain the so-called Leith constraint (Leith 1968)

∂ΠB(k)

∂k
= L(k)

∂ΠA(k)

∂k
, (2.11)

which shows that if ΠB(k) is strictly constant, then ΠA(k) is also strictly constant and
vice versa.

3. Flux inequalities for the forced-dissipative case
Assume that the forcing spectrum FA(k) is confined to a narrow interval of

wavenumbers [k1, k2]. Then, we have

FA(k) = 0 and FB(k) = 0, ∀k ∈ (0, k1) ∪ (k2, +∞), (3.1)

and we can show, without making any ad hoc assumptions, that under stationarity,
the fluxes ΠA(k) and ΠB(k) will satisfy the inequalities

∫ k

0

L′(q)ΠA(q) dq < 0, ∀k > k2, (3.2)

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) > 0, ∀k < k1. (3.3)

The ΠA(k) inequality is shown as follows. Integrating (2.9) and (2.10) over
the (k, +∞) interval and employing the stationarity conditions ∂A(k)/∂t =0 and
∂B(k)/∂t = 0 gives:

ΠA(k) =

∫ +∞

k

[DA(q) − FA(q)] dq, (3.4)

ΠB(k) =

∫ +∞

k

[DB(q) − FB(q)] dq =

∫ +∞

k

L(q)[DA(q) − FA(q)] dq. (3.5)

Using integration by parts, and the Leith constraint, we have the relation

ΠB(k) =

∫ k

0

∂ΠB(q)

∂q
dq =

∫ k

0

L(q)
∂ΠA(q)

∂q
dq (3.6)

= L(k)ΠA(k) −
∫ k

0

L′(q)ΠA(q) dq, (3.7)

from which we obtain the inequality itself:

∫ k

0

L′(q)ΠA(q) dq = L(k)ΠA(k) − ΠB(k) (3.8)

=

∫ +∞

k

[L(k) − L(q)][DA(q) − FA(q)] dq (3.9)

< 0, ∀k ∈ (k2, +∞). (3.10)

Here we use L(q) − L(k) > 0, ∀q ∈ (k, +∞), and DA(q) − FA(q) � 0, which follows
from DA(q) � 0 and FA(q) = 0, ∀q > k >k2.
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The counterpart inequality for the flux ΠB(k) can be derived similarly. We begin
by integrating (2.9) and (2.10), but this time over the (0, k) interval:

ΠA(k) = −
∫ k

0

[DA(q) − FA(q)] dq, (3.11)

ΠB(k) = −
∫ k

0

[DB(q) − FB(q)] dq = −
∫ k

0

L(q)[DA(q) − FA(q)] dq. (3.12)

Similarly, to avoid the singularity at q = 0, we do the integration by parts over the
(k, +∞) interval:

ΠA(k) = −
∫ +∞

k

∂ΠA(q)

∂q
dq = −

∫ +∞

k

1

L(q)

∂ΠB(q)

∂q
dq (3.13)

=
ΠB(k)

L(k)
−

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) dq, (3.14)

and consequently, we obtain

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) = −L(k)ΠA(k) − ΠB(k)

L(k)
(3.15)

=
1

L(k)

∫ k

0

[L(k) − L(q)][DA(q) − FA(q)] dq (3.16)

> 0, ∀k ∈ (0, k1). (3.17)

Here, the inequality changes direction, because L(k) − L(q) > 0, ∀q < k.
Note that both proofs are based on the inequality

L(k)ΠA(k) − ΠB(k) < 0, ∀k ∈ (0, k1) ∪ (k2, +∞), (3.18)

which holds both upscale and downscale of the forcing range in the forced-dissipative
case discussed here. We called this inequality, in a previous paper (Gkioulekas & Tung
2005b), the ‘Danilov inequality’ because it was communicated to us by Danilov. It is
worth noting that this inequality is the flux analogue of a similar but distinct inequality
derived by Fjørtøft (1953) in terms of the energy spectrum and the enstrophy spectrum.
Finally, similar flux inequalities were known to Eyink (1996). Equation (3.18) is a
sharper and more general variation of these previous results.

Also note that, for k < k1, since DA(k) > 0 for all k, it follows immediately from the
steady state version of (2.9) and the assumption (3.1) that

ΠA(k) = −
∫ k

0

DA(q) dq < 0, ∀k ∈ (0, k1). (3.19)

In general, one can easily show, for the forced-dissipative case where the forcing
spectrum obeys (3.1), under statistical equilibrium, that

ΠA(k) > 0 and ΠB(k) > 0, ∀k ∈ (k2, +∞), (3.20)

ΠA(k) < 0 and ΠB(k) < 0, ∀k ∈ (0, k1). (3.21)

It follows that, contrary to some popular misconceptions, both fluxes go downscale
on the downscale side of injection, and upscale on the upscale side of injection.
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4. Implications for two-dimensional turbulence
For the case of two-dimensional turbulence, A(k) is the energy spectrum E(k), B(k)

is the enstrophy spectrum G(k) and L(k) = k2. The inequality (3.2) simplifies to:

∫ k

0

2qΠE(q) dq < 0, ∀k ∈ (k2, +∞). (4.1)

This integral constraint implies that energy fluxes upscale in the net. The constraint
(4.1) also holds trivially for k < k1, since ΠA(k) < 0 for all k < k1. For k > k2, the
integration range also includes the energy injection interval [k1, k2] and both the
upscale cascade range and the downscale cascade range. The inequality (4.1) implies
that the negative flux in the (0, k1) interval is more intense than the positive flux in
the (k2, +∞) because the weighted average of ΠE(k) gives more weight to the large
wavenumbers.

Similarly, (3.3) reduces to

∫ +∞

k

2q−3ΠG(q) dq > 0, ∀k ∈ (0, k1), (4.2)

which is a statement that enstrophy fluxes downscale in the net.
The inequalities (4.1) and (4.2) are the two main results in two-dimensional

turbulence we were looking for, and they constitute proofs that, in forced-dissipative
two-dimensional turbulence under statistical equilibrium, energy is predominantly
transferred upscale while enstrophy is transferred down-scale.

To understand the implications of these inequalities on two-dimensional turbulence
we have to distinguish between the following cases and consider them separately.

(a) No infrared sink of energy, finite box. This is the case considered by Tran &
Shepherd (2002). The coefficient of hypoviscosity, which provides the sink at the large
scales, is zero, i.e. ν1 = 0. The only dissipation mechanism is a very small molecular
viscosity ν, with p = 1. Our result of net energy cascade (4.1) still holds. However,
without a sink of energy at large scales, the energy which is fluxed upscale piles up
until it is dissipated by the small viscosity at the forcing scale (Tran & Bowman 2003,
2004). No inertial range exists where the fluxes of energy and enstrophy are constant.
Nevertheless, (4.1) implies that there is more energy flux dissipated on the upscale
side of the forcing range than on the downscale side of the forcing range, and likewise
(4.2) implies that there is more enstrophy dissipated on the downscale side of the
forcing range than on the upscale side of the forcing range.

(b) No infrared sink of energy, infinite box. The same as in case (a) except that the
domain is infinite. This is the classical case of two-dimensional turbulence considered
by Kraichnan (1967), Leith (1968), and Batchelor (1969). Although there is no
infrared sink of energy, the energy cascaded upscale can keep on cascading to ever-
larger scales. There is no pile-up of energy, but there is always a spectral region
at larger and larger scales where steady state cannot be achieved. Let this region
be denoted by 0 < k < k0(t). Quasi-steady state can be achieved for k > k0. In this
latter spectral region, our inequalities (4.1) and (4.2) do hold. Since energy transferred
upscale through k0 is ‘lost’ to the region downscale from k0, the infinite domain acts in
effect like a perfect infrared sink. Furthermore, in the original formulation of the KLB
theory, the molecular viscosity coefficient ν is taken to ν → 0+, with the result that
the energy dissipated at the ultraviolet end of the spectrum vanishes in the limit. In
this configuration, all injected energy is transferred upscale and all injected enstrophy
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is transferred downscale. These results for the KLB theory have been summarized by
Gkioulekas & Tung (2005a,b).

(c) Finite infrared and ultraviolet sinks of energy. When there is a finite infrared
sink of energy upscale of injection and a finite ultraviolet sink of energy downscale
of injection, there is in general both an upscale and a downscale flux of energy. This
situation has been considered in Eyink (1996) and Gkioulekas & Tung (2005a,b). The
upscale flux should be larger than the downscale flux, according to (4.1). It should
be noted that, because of the inequality (3.18), the contribution of downscale energy
flux to the energy spectrum in the inertial range on the downscale side of injection
is always subleading and hidden. This is not true in some baroclinic cases of QG
turbulence (Gkioulekas 2006; Gkioulekas & Tung 2007).

5. Implications for models of QG turbulence
As derived by Charney (1971), QG turbulence conserves two quantities, total energy,

which consists of horizontal components of kinetic energy plus available potential
energy, and potential enstrophy. We now discuss briefly the implications of the
flux inequalities on one-layer and two-layer simplifications of the quasi-geostrophic
turbulence model.

(a) CHM turbulence. This model is a two-dimensional version of the quasi-
geostrophic model, and represents physically two-dimensional turbulence on a rotating
frame of reference. The governing equation is (2.1) with L(k) = k2 + λ2, where λ is the
deformation wavenumber. The total energy E and total potential enstrophy G are
given by E = (1/2)〈〈|∇ψ |2 + λ2|ψ |2〉〉 and G =(1/2)〈〈ζ 〉〉2. The flux inequalities are

∫ k

0

2qΠE(q) dq < 0, ∀k ∈ (k2, +∞), (5.1)

∫ +∞

k

2q

(q2 + λ2)2
ΠG(q) dq > 0, ∀k ∈ (0, k1), (5.2)

and they still imply that the total energy is mainly transferred upscale, whereas the
potential enstrophy is mainly transferred downscale.

(b) SQG turbulence. This model can be derived from the quasi-geostrophic model
by assuming that the potential vorticity is zero over the entire three-dimensional
domain. Then, it can be shown that the behaviour of the entire system is coupled to
its behaviour in the boundary condition at the layer z = 0 (Tung & Orlando 2003b).
At z = 0, the potential temperature Θ is governed by (2.1) with L(k) = k, where Θ = ζ .
The conserved quadratic B represents the total energy E2D of the system at the layer
z = 0, whereas the quadratic A is the total energy E3D integrated over the whole
domain z ∈ (0, +∞) (Gkioulekas 2006; Gkioulekas & Tung 2007). In this system,
there is no enstrophy, since the potential vorticity has been taken equal to zero, and
consequently there is no enstrophy cascade. The flux inequalities are∫ +∞

k

q−2ΠE2D
(q) dq > 0, ∀k ∈ (0, k1), (5.3)

∫ k

0

ΠE3D
(q) dq < 0, ∀k ∈ (k2, +∞), (5.4)

and they imply that downscale from injection the dominant process is a downscale
energy cascade at the layer z = 0. Upscale from injection the energy spectrum is
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dominated by an inverse energy cascade of the total energy over the entire domain.
It should be noted that, just as in two-dimensional turbulence, a dissipation sink is
probably needed both upscale and downscale of injection to allow either cascade to
form successfully.

(c) 2-layer model of QG turbulence. This model consists of two symmetrically
coupled layers of two-dimensional turbulence where the deformation wavenumber
λ is the coupling constant (Salmon 1978, 1980, 1998). For the general baroclinic case,
specifically with Ekman damping only in the lower layer, Danilov’s inequality (3.18)
does not necessarily hold for 2-layer models (see Gkioulekas 2006; Gkioulekas &
Tung 2007). We therefore do not have a conclusive proof for the case of 2-layer
models. However, numerical results (see e.g. Tung & Orlando 2003a) show that most
of the energy will still go upscale in this system, although some small fraction goes
downscale. In particular, the upscale energy cascade in the inertial range upscale
of injection is much larger than the downscale flux of energy in the inertial range
downscale of injection.

6. Flux inequalities for the time-dependent case
We now generalize the proof to time-dependent cases. Since (3.8) and (3.15) are

mathematical identities, they hold whether or not the quantities involved are time-
dependent, that is,∫ k

0

L′(q)ΠA(q) dq = L(k)ΠA(k) − ΠB(k), ∀k ∈ (k2, +∞), (6.1)

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) = −L(k)ΠA(k) − ΠB(k)

L(k)
, ∀k ∈ (0, k1). (6.2)

Equations (3.10) and (3.17), however, should be modified to:

L(k)ΠA(k) − ΠB(k) =

∫ +∞

k

[L(k) − L(q)]

[
DA(q) − FA(q) +

∂A(q)

∂t

]
dq, ∀k ∈ (0, k1),

(6.3)

L(k)ΠA(k) − ΠB(k) = −
∫ k

0

[L(k) − L(q)]

[
DA(q) − FA(q) +

∂A(q)

∂t

]
dq, ∀k ∈ (k2, +∞).

(6.4)

Choosing k to be outside the forcing range [k1, k2], and combining the previous four
equations, we obtain:∫ k

0

L′(q)ΠA(q) dq =

∫ +∞

k

[L(k) − L(q)]

[
DA(q) +

∂A(q)

∂t

]
dq, ∀k ∈ (k2, +∞),

(6.5)∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) =

1

L(k)

∫ k

0

[L(k) − L(q)]

[
DA(q) +

∂A(q)

∂t

]
dq, ∀k ∈ (0, k1).

(6.6)

The equations (6.5) and (6.6) together are a general and remarkable result, because
they relate the weighted mean of flux of A in (0, k) to what happens outside this range,
and the weighted mean of flux of B in (k, +∞) to what happens outside (k, +∞).

(a) Initial stage. During the initial development, nonlinear interactions transfer
energy from one wavenumber to another. If the initial condition A0(k) for A(k) is of
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compact support (which is almost always the case in reality) then we can expect that,
during the initial stages of decay where A is still in the process of spreading, there
will be a small wavenumber ε1 > 0 and a large wavenumber ε2 > 0 such that

A0(k) = 0 and
∂A(k)

∂t
� 0, ∀k ∈ (0, ε1) ∪ (ε2, +∞). (6.7)

Combining this condition with (6.5) and (6.6), it follows that:

∫ k

0

L′(q)ΠA(q) dq �

∫ +∞

k

[L(k) − L(q)]
∂A(q)

∂t
dq � 0, ∀k ∈ (ε2, +∞), (6.8)

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q)dq �

1

L(k)

∫ k

0

[L(k) − L(q)]
∂A(q)

∂t
dq � 0, ∀k ∈ (0, ε1). (6.9)

Note that each of the two previous inequalities uses only part of the assumption, i.e.

∂A(k)

∂t
> 0, ∀k ∈ (ε2, +∞) =⇒

∫ k

0

L′(q)ΠA(q) dq < 0, ∀k ∈ (ε2, +∞), (6.10)

∂A(k)

∂t
> 0, ∀k ∈ (0, ε1) =⇒

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) > 0, ∀k ∈ (0, ε1). (6.11)

Furthermore, for t = 0, the assumption

A0(k) = 0, ∀k ∈ (0, ε1) ∪ (ε2, +∞) (6.12)

implies that

∂A(k)

∂t

∣∣∣∣
t=0

� 0, ∀k ∈ (0, ε1) ∪ (ε2, +∞), (6.13)

from the positivity of A(k). However, for t > 0 the latter is an additional hypothesis.
(b) Intermediate stage. In the intermediate stage, nonlinear spreading and dissipation

are both active at the small scales. Nonlinear transfer still supplies some A to small
and large scales by spreading. Therefore

DA(q) +
∂A(q)

∂t
� 0, ∀k ∈ (0, ε1) ∪ (ε2, +∞), (6.14)

and so from (6.5) and (6.6) we again obtain

DA(q) +
∂A(k)

∂t
� 0, ∀k ∈ (ε2, +∞) =⇒

∫ k

0

L′(q)ΠA(q) dq � 0, ∀k ∈ (ε2, +∞),

(6.15)

DA(q) +
∂A(k)

∂t
� 0, ∀k ∈ (0, ε1) =⇒

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) � 0, ∀k ∈ (0, ε1).

(6.16)

(c) Final decaying stage. In the final stages of unforced turbulence, A decays due to
dissipation. The decay rate of A(k) is the same as the dissipation rate. Therefore,

DA(q) +
∂A(q)

∂t
= 0, ∀k ∈ (0, ε1) ∪ (ε2, +∞), (6.17)
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and consequently, ∫ k

0

L′(q)ΠA(q) dq = 0, ∀k ∈ (ε2, +∞), (6.18)

∫ +∞

k

L′(q)

[L(q)]2
ΠB(q) = 0, ∀k ∈ (0, ε1). (6.19)

We do not have upscale cascade. During this final stage, nonlinear spreading has
already occurred, and dissipation of energy dominates. Nevertheless, this still implies
that A is transferred in the net upscale and B in the net downscale.

The implication of these results is that net energy flux is directed in the net upscale
for the time-dependent case of two-dimensional, and barotropic QG turbulence in
the absence of forcing, if the initial condition is of compact support and if it is
assumed that it subsequently spreads into small scales. For SQG turbulence the result
is reversed, in the sense that energy in the z =0 layer is transferred downscale in the
net.

7. Remarks on Rhines’ proof
Rhines starts with the assumption:

d

dt

∫ +∞

0

(k − K)2E(k) dk > 0, (7.1)

where K = E1/E0 is the first moment of E(k) and Ea is defined as

Ea =

∫ +∞

0

kaE(k) dk. (7.2)

Here (7.1) is a ‘postulate that the peak will spread in time’ from its current centre of
‘mass’ K (Rhines 1975), not necessarily in particular realizations, but in a probabilistic
sense where an ensemble average over all initial conditions, constrained by the initial
energy spectrum, has been taken. Rhines then shows that

dK2

dt
< 0, (7.3)

which means that the average location of the peak tends to move toward smaller
wavenumbers, and concludes from this that the energy has a tendency to be transferred
upscale.

In Rhines (1975), the details of the proof are not given. In Rhines (1979), the
following more detailed argument is given, which is correct for the inviscid case ν = 0
and ν1 = 0. Expanding∫ +∞

0

(k − K)2E(k) dk = E2 − 2KE1 + K2E0 = E2 − K2E0, (7.4)

and solving for K2, we obtain

E0K
2 = E2 −

∫ +∞

0

(k − K)2E(k) dk. (7.5)

Differentiating with respect to t , and writing E′
a = dEa/dt , we have

E′
0K

2 + E0

dK2

dt
= E′

2 − d

dt

∫ +∞

0

(k − K)2E(k) dk < E′
2, (7.6)
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which gives

dK2

dt
<

E′
2 − E′

0K
2

E0

. (7.7)

If we assume E′
0 = 0 and E′

2 = 0, which can be deduced from conservation of energy
and enstrophy for the case where there are no viscosities, then it follows that

dK2

dt
< 0. (7.8)

However, Rhines’ argument was supposed to work for the viscous case as well (see
p. 405, last equation, of Rhines 1979) where E′

0 < 0 and E′
2 < 0. It appears that the

term E′
0K

2 in (7.6) was ignored in that derivation. If the term is included, then the
right-hand side of (7.7) has two terms of opposite sign, and it is not immediately
clear which term dominates. Nevertheless, Scott (2001) showed, using the Hölder
inequality, that the proof can still be completed for the case of Ekman damping and
molecular diffusion (h = 0 and p =1).

As it stands, this proof is interesting, but it cannot be extended to the forced-
dissipative case because it relies on describing the behaviour of time derivatives of the
energy spectrum rather than fluxes. Furthermore, it relies on assumption (7.1), without
proof. The difference between assumption (7.1) and the assumption used in our proof
is that (7.1) is a global condition stated over the entire range of wavenumbers, whereas
the assumption needed for our proof in the previous sections is a local condition over
the intervals (0, ε1) ∪ (ε2, +∞). We suspect that the need to make some assumption
for proofs covering the decaying case is unavoidable because it is necessary to weed
out unusual initial conditions.

It should be noted that the Rhines proof given by Salmon (1998) is different from
the proof given in the original papers (Rhines 1975, 1979). The difference is that
in (7.1) K , which is time-dependent, is replaced with a constant wavenumber k1

representing the initial position of the peak. This modified proof was extended to the
general case of α-turbulence by Smith et al. (2002). However, we feel that the original
assumption (7.1) is more reasonable, on physical grounds, and there is no benefit in
modifying (7.1).

Furthermore, it should be stressed that there is an important difference between
the proof of Scott (2001) and the original Rhines proof. The main difference is that
Rhines assumes that the unnormalized variance of the energy spectrum is increasing
with time (see (7.1)) whereas Scott (2001) assumes that the normalized variance σ 2

E is
increasing. The definition of σ 2

E is

σ 2
E ≡

∫ +∞

0

(k − K)2E(k) dk

∫ +∞

0

E(k) dk

. (7.9)

Because the denominator of σ 2
E is decreasing with time, it is easy to see that the

assumption dσ 2
E/dt > 0 is mathematically weaker than the assumption (7.1) used in

the original formulation of the Rhines proof. Consequently, since it is shown to be
possible to arrive to the same conclusion under a weaker assumption, the statement
proved by Scott (2001) is stronger than the statement claimed by Rhines. Thus, Scott
(2001) implicitly also rehabilitates the original Rhines proof. However, Scott (2001)
did not consider the case of hyperdiffusion and hypodiffusion in his paper.



186 E. Gkioulekas and K. K. Tung

For the more general case of hyperdiffusion and hypodiffusion, from the
conservation laws, we find that E′

0 and E′
2 read

E′
0 = −2νE2p − 2ν1E−2h, (7.10)

E′
2 = −2νE2p+2 − 2ν1E−2h+2, (7.11)

and the time derivative of K2 is now bounded by

dK2

dt
<

E′
2 − E′

0K
2

E0

=
2ν(K2E2p − E2p+2) + 2ν1(K

2E−2h − E−2h+2)

E0

(7.12)

=
2ν

E0

(
E2

1E2p

E2
0

− E2p+2

)
+

2ν1

E0

(
E2

1E−2h

E2
0

− E−2h+2

)
(7.13)

=
2ν

E0

E2
1E2p − E2

0E2p+2

E2
0

+
2ν1

E0

E2
1E−2h − E2

0E−2h+2

E2
0

. (7.14)

The first term is again negative because

E2
0E2p+2 = (E0E2p+2)E0 � (E2E2p)E0 = E2p(E0E2) � E2pE2

1, (7.15)

for all p > 0. Here, we employ the inequality E2
1 � E0E2, and the theorem that the

function E(κ, α) ≡ Eκ+α/Eκ is an increasing function with respect to κ for α > 0 (see
the Appendix), which implies that E0E2p+2 � E2E2p for all real p > 0. For h = 0, the
second term is negative too. To see this, note that the numerator of that term reads

E2
1E0 − E2

0E2 = E0

(
E2

1 − E0E2

)
� 0. (7.16)

However, as far as we know, the sign of the second term is indeterminate when
0 <h< 1/2 and can be shown to be positive when h > 1/2. To show this, note that

E2
0E−2h+2

E2
1E−2h

�
E0E−2h+1E−2h+2

E1E−2h+2E−2h

=
E0E−2h+1

E1E−2h

�
E−2hE−2h+1

E−2h+1E−2h

= 1, (7.17)

Here we use E0/E1 � E−2h+1/E−2h+2, which is valid for h > 1/2, and E0/E1 �
E−2h/E−2h+1, which is valid for h > 0. It follows that

E2
1E−2h − E2

0E−2h+2 � 0, for h > 1/2. (7.18)

Thus, the validity of the Rhines proof continues for the case of hyperdiffusion (p > 1),
but cannot be extended to the case of hypodiffusion (h > 0).

It is interesting to note that when one begins with the weaker hypothesis of Scott
(2001), it can be shown that the contribution from the hypodiffusion term is always
positive for h > 0. In the argument above we cannot show this unless h > 1/2. To
see this, we retrace the argument of Scott (2001) for the case of hyperdiffusion and
hypodiffusion:

dK2

dt
=

d

dt

(
E2

E0

)
− dσ 2

E

dt
=

E′
2E0 − E2E

′
0

E2
0

− dσ 2
E

dt
(7.19)

= − 2ν

E2
0

(E2p+2E0 − E2E2p) − 2ν1

E2
0

(E−2h+2E0 − E2E−2h) − dσ 2
E

dt
. (7.20)

The first term is negative because E2p+2E0 � E2E2p , for all p > 0. As Scott (2001)
noted, the second term vanishes for h = 0; however, it is positive for h > 0. Thus, for
h > 0, the sign of dK2/dt remains indeterminate.
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8. Concluding remarks
We have shown two inequalities (3.2) and (3.3), which for the case of two-

dimensional turbulence imply that the weighted average of the energy flux is negative
and the weighted average of the enstrophy flux is positive. This implies that the
energy tends to go upscale in the net and the enstrophy tends to go downscale in the
net. For the forced-dissipative case, the inequalities can be derived without any ad hoc
assumptions. For the decaying case, a sufficient condition for the energy inequality is
to assume that there exists a very large wavenumber k such that, over the interval
(k, +∞), the energy spectrum is increasing or constant. Likewise, for the enstrophy
inequality it is sufficient that we assume that there exists a very small wavenumber k

such that, over the interval (0, k), the energy spectrum is also increasing or constant.
From a physical point of view, these assumptions are slightly more plausible than
the assumption (7.1) made by Rhines in his proof. It should be noted that, unlike
previous proofs in both the forced-dissipative and the decaying case, the inequalities
have the same mathematical form. Our argument then is a unified proof that covers
all cases, and specialized results can be deduced from our inequalities for special
cases. We have also briefly discussed the implications of our results for one-layer and
two-layer models of quasi-geostrophic turbulence.

Note that none of the results obtained in this paper forbids energy from being
transferred downscale even when it is shown that the net flux should be directed
upscale; they merely say that in those cases the energy going upscale in the upscale
range should be larger than that going downscale in the downscale range. In fact, for
the case of finite domains with finite viscosity, Gkioulekas & Tung (2005a,b) showed
that the downscale flux of energy on the short-wave side of injection must be non-zero.
Even in the case of the 2-layer model, where Tung & Orlando (2003a) found in their
numerical experiment that the downscale energy flux over the mesoscales contributes
visibly to the observed energy spectrum, it is still true that there is a larger inverse
energy cascade from the synoptic to the planetary scales. The exception is the case of
surface QG turbulence, where most of the energy at the z = 0 layer goes downscale, as
shown here. We suspect that this may be due to the collapse of temperature gradients
on solid surfaces (a model of frontogenesis), and differs from the turbulence in the
free atmosphere. In the free troposphere, there is strong observational evidence (e.g.
Boer & Shepherd 1983 and Straus & Ditlevsen 1999) that energy flux is negative
(upscale) from synoptic to planetary scales, and the positive (downscale) flux over the
mesoscales (Cho & Lindborg 2001; Cho et al. 2003) is small by comparison.

The research is supported by the National Science Foundation, under the grant
DMS-03-27658. It is a pleasure to thank Sergey Danilov, Rob Scott, and an
anonymous referee for their very helpful comments on our manuscript.

Appendix. Hölder inequalities
Let f (x) and g(x) be two functions defined over a domain x ∈ A, such that

f (x) > 0 and g(x) > 0, ∀x ∈ A, (A 1)

and let a, b be real numbers such that (1/a)+ (1/b) = 1. Then the Hölder inequalities,
in the integral form, read

∫
A

f (x)g(x) dx �

(∫
A

[f (x)]a dx

)1/a (∫
A

[g(x)]b dx

)1/b

. (A 2)
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For the case a = b = 2 and A = (0, +∞) with f (x) = kα
√

E(k) and g(x) = kβ
√

E(k), we
have

Eα+β =

∫ +∞

0

kα+βE(k) dk (A 3)

�

(∫ +∞

0

(kα
√

E(k))2 dk

)1/2 (∫ +∞

0

(
√

kβE(k))2 dk

)1/2

=
√

E2αE2β. (A 4)

For the cases (α, β) = (0, 1) and (α, β) = (0, 2) we obtain E2
1 � E0E2 and E2

2 � E0E4

by raising squares, noting that all the quantities involved are positive. For the case
α �→ κ and β �→ κ +2α we get the inequality E2

κ+α � EκEκ+2α , which can be rewritten
as

Eκ+α

Eκ

�
Eκ+2α

Eκ+α

. (A 5)

This inequality appears to indicate that the function E(κ, α) ≡ Eκ+α/Eκ is an
increasing function with respect to κ for α > 0 and decreasing for α < 0. To prove
this, we first note that from (A 5) we have, for any integer n> 0,

E(κ + α/n, α) =
Eκ+α/n+α

Eκ+α/n

=

n∏
j=1

Eκ+α/n+jα/n

Eκ+α/n+(j−1)α/n

(A 6)

�
n∏

j=1

Eκ+jα/n

Eκ+(j−1)α/n

=
Eκ+α

Eκ

= E(κ, α). (A 7)

It follows that since E(κ, α) is a differentiable function with respect to κ , that
∂E(κ, α)/∂κ � 0 for α > 0 and ∂E(κ, α)/∂κ � 0 for α < 0, and thus E(κ, α) is an
increasing function with respect to κ for α > 0 and a decreasing function for α < 0.
All the inequalities needed for our discussion of Rhines’ proof can be deduced from
this result.
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